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SUMMARY 
The primary aim of this paper is to demonstrate how the ‘design-of-experiments’ techniques which are 
successful in physical experiments could also be adapted to a numerical simulation code. 

As an example this technique is applied to a general finite difference code used for predicting three- 
dimensional turbulent recirculating flows. Here the equations for velocities and continuity are solved using 
the algorithm called SIMPLE, which stands for semi-implicit method for pressure-linked equations. 
Physical modelling of turbulence is taken care of by means of kinetic energy and turbulence dissipation rate 
equations. 

The objective is to optimize the underrelaxation factors of primary and secondary flow variables so that the 
number of iterations required for convergence is minimum. This is done by the orthogonal array technique 
(a particular type of design-of-experiment technique). 

The geometry considered for this purpose is that of a simple gas turbine can combustor and the study is 
restricted to the isothermal non-reacting condition. 

Tests are carried out on three different grid configurations. In each case the underrelaxation factor for 
velocities contributed most to speed up the rate of convergence. Also, for each grid configuration the 
underrelaxation factor settings for minimum iterations for convergence was found to be same. Hence it is 
proposed that when doing grid independence tests for any similar flow situation, all the underrelaxation 
factors could be optimized on coarse grids. 

KEY WORDS Orthogonal arrays Underrelaxation factors SIMPLE Grid independence Design of experiments 

INTRODUCTION 

The classical one-factor-at-a-time strategy used for performing experiments fails to detect 
interactions between the variable factors. The design-of-experiment technique overcomes this 
deficiency and is now gaining popularity in industries throughout the world. This concept can 
also be extended to computer simulation of any system with some modifications. This paper deals 
with such an attempt. 

The first few sections are devoted to introducing the design-of-experiment technique to the 
CFD world. For the sake of brevity only the bare essentials are provided. For more details the 
reader is referred to References 1-3. 

The remaining sections demonstrate the application of this technique in optimizing the 
underrelaxation factors in a SIMPLE-based finite difference code for three-dimensional 
turbulent recirculating flows. 
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TERMINOLOGY 

Some fundamental terms associated with design of experiments are defined as follows. 

Factor. This is a controlled or an uncontrolled variable which influences the result of an 
experiment. It may be quantitative, e.g. temperature, time, pressure, etc., or qualitative, 
e.g. different machines, different operators, switch on or off. 
Level. The values of the factors being examined in the experiment are called levels. For 
quantitative factors each chosen value becomes a level; for example, if an experiment is 
conducted at four different temperatures then the factor temperature has four levels. In 
the case of qualitative factors, e.g. if a machine is run by two operators independently, the 
factor operator has two levels. Levels are denoted as 1, 2, 3 and so on. 
Treatment. A treatment is a single level assigned to a single factor during an experimental 
run, e.g. pressure at 1 atm. A treatment combination is the set of levels for all factors in a 
given experimental run; for example, an experiment with a chemical process at a pressure 
of 1 atm, a temperature of 500 K and using a catalyst ‘A’ constitutes one treatment 
combination. 
Main efects. The change in response produced by the change in level of a factor is called 
the main effect of that factor, e.g. the increase in power output of a two-stroke engine by a 
change of port timing alone. 
Interaction. Interaction is the simultaneous influence of two or more factors on the 
response. If the effect of one factor is different at different levels of one or more factors, the 
two factors are said to interact. For example, consider the following case. 

The yield of a product depends on two factors A and B. Each factor has two levels (1 and 
2). When A is at level 1, increasing B from level 1 to level 2 results in an increase in yield by 
x kg. If the same increase (within the range of experimental errors) is not obtained by 
increasing B from level 1 to level 2 when A is at level 2 then the factors are said to interact. 
Symbolically the interaction is denoted as A x B and is known as first-order interaction. If 
the interaction between two factors A and B is different at different levels of a third factor 
C then there is said to be an interaction between the three factors. This is called second- 
order interaction and is denoted by A x B x C .  Similarly, higher-order interactions can be 
defined. 
Randomization. If the sequence of experiments is determined in a random manner, it is 
called randomization. This minimizes the effect of uncontrolled variables (noise factors) 
and personal bias of the experimenter. 
Replication. Replication is the repetition of an observation or measurement in order to 
increase the precision. Replication provides an opportunity for the effects of uncontrolled 
factors or factors unknown to the experimenter to balance out and thus with random- 
ization acts as a bias-decreasing tool. Replication also helps’to detect gross errors in the 
measurements. 

(viii) Contribution ratio (CR). The contribution ratio of a factor is a measure to estimate the 
extent to which the factor contributes towards the variation of response. 

STEPS IN DESIGN OF EXPERIMENTS 

The following are the steps to be taken for a good experimental design. 

(i) Recognition and statement ofthe problem. A clear statement of the problem often contrib- 
utes substantially to a better understanding of the phenomena and the final solution of the 
problem. 
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(ii) Choice of factors and leuels. All the independent variables or factors of the product or 
process that could possibly influence the quality or performance of the end products or 
process should be specified. The levels of factors should also be decided and their values 
should be within a reasonable range of interest. 

(iii) Selection of a response variable. In choosing a response or dependent variable, the 
experimenter must be certain that the response to be measured really provides informa- 
tion about the problem under study. 

(iv) Choice of experimental design. The formal plan for conducting the experiment is called the 
experimental design. A detailed description of several types of experimental design can be 
found in Reference 2. We will concentrate only on factorial and fractional factorial 
designs, which are described in subsequent sections. 

(v) Perfarming the experiment. Particular attention should be paid to randomization, meas- 
urement, accuracy and maintaining as uniform an experimental environment as possible. 

(vi) Data analysis. Statistical methods such as analysis of variance (ANOVA) should be used 
in analysing the results. The contribution ratios of all the factors and interactions 
considered are then found. 

(vii) Conclusions and recommendations. Recommendations may include a further round of 
experiments, since experimentation is usually an iterative process with one experiment 
answering some questions and simultaneously posing others. 

FACTORIAL EXPERIMENTS 

A popular method of experimentation used so far by researchers is the one-factor-at-a-time 
approach. Each factor in turn is varied while all the rest of the factors are held at some fixed, 
constant levels. This strategy is inefficient because it fails to detect interaction between the 
variable factors and there is a possibility of false optimum setting being achieved. Hence this 
method is now rapidly being replaced by the technique of factorial experiments. Factorial 
experiments can estimate interactions between the factors and are also the most efficient way of 
estimating the main effects even if no such interactions are present. These advantages of a 
factorial experiment over one-factor-at-a-time experiment are illustrated as follows. 

Let us consider a chemical reaction which results in a certain product. Suppose the amount of 
product produced depends on two factors, namely pressure and temperature. The aim is to 
optimize the settings of pressure and temperature so that the yield of the product is maximum. 
For the sake of simplicity we conduct experiments at only two levels of pressure (Po and P1) and 
two levels of temperature (To and Tl) .  

The one-at-a-time strategy proceeds as follows (see Table I). The experimenter tries out the 
setting ToPo which yields 4 kg. Then, keeping the pressure at the same level Po, he tries out the 
combination T,P, which yields 2 kg. The experimenter infers that Tl results in less yield, so he 
reverts to the temperature setting To and tries out the combination TOPl which produces 6 kg. He 
repeats these trials and gets the same results within experimental errors. He now concludes that 
TOP, is the best combination for maximizing the yield. He has not tried the setting TIPl at all 
because he feels that since the yield was reduced by 50% (from 4 to 2 kg) when the temperature 
was changed from To to T, with the pressure at Po, the same would be the case if the temperature 
were changed from To to Tl with the pressure at  P,. 

He expects the yield for T I P ,  to be only around 3 kg (i.e. 50% of 6 kg). His prediction will be 
correct only if the pressure and temperature factors do not interact with each other; but if they do, 
the yield for the combination T I P ,  may be much higher or much lower than 3 kg. It is also 
possible that the combination may result in the maximum yield, say 10 kg, in which case the 
one-at-a-time experiment strategy has missed the optimum setting T I P ,  . 
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Table I. A simple hypothetical factorial experiment 

Pressure Temperature 

4 2 
6 ? 

In factorial experiments all possible combinations of levels of factors are tried out and hence 
the possibilities of such mishaps are averted. 

Even if there is no interaction between pressure and temperature, it is advantageous to perform 
factorial experiments. 

In the one-at-a-time strategy detailed above the combinations TOPO, T, Po and TOP, have been 
tried out. It is evident from Table I that the effect of changing the temperature from To to Tl is to 
reduce the yield by 50% and the effect of changing the pressure from Po to PI is to increase the 
yield by 50%. It is necessary to repeat the experiment at least once. This is done and similar 
results are obtained within the limits of experimental error. Thus we have two pieces of evidence 
to confirm the effect of pressure and temperature on the yield of the product. In all, six trials have 
been performed. 

Now, if factorial design is adopted then each possible combination of factors is tried out once, 
i.e. four trials in all. Since there is no interaction, combination T, P, will yield 3 kg. Here also we 
have two pieces of evidence to prove that the change of temperature from To to TI results in a 
50% decrease in yield (from 4 to 2 kg for combinations TOPO and TIPo and from 6 to 3 kg for 
combinations TOP, and TIP,)  and also two pieces of evidence to prove that the change of 
pressure from Po to PI results in a 50% increase in yield (from 4 to 6 kg for combination TOPO and 
TOPl and from 2 to 3 kg for combinations TIPo and TIP,). 

Thus the findings with factorial design are as precise as those obtained by performing one-at-a- 
time experiments twice; but while the latter strategy took six trials, the same preciseness was 
achieved by factorial experiments in only four trials. 

In general, if there are m levels for each of N factors, the factorial design involves mN trials. 

FRACTIONAL FACTORIAL DESIGN 

When the number of factors is too large, the full factorial design calls for a large number of 
experiments. For example, if there are five factors with two levels each, we require 2’=32 
experiments to estimate all the main effects and interactions. This may not be economical and 
therefore one should go for fractional factorial experiments. 

When there are several factors, the effects of higher-order interactions are generally not 
significant and in some cases are also difficult to interpret. Hence information on these higher- 
order interactions is deliberately lost to reduce the number of experiments. 

In the above example of five factors each at two levels, all the main effects and first-order 
interactions can be estimated with a half-factorial design of 3 x 2’ = 16 trials. All the main effects 
can be estimated with a quarter-factorial design of eight trials. Such designs are known as 
fractional factorial designs. 
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ORTHOGONAL ARRAYS AND LINEAR GRAPHS 

Orthogonal arrays (Tables 11-IV) are the means to design factorial and fractional factorial 
experiments. 

Any N x k matrix A with entries from a set of s (2 2) elements is called an orthogonal array of 
size N ,  k constraints, s levels, strength d and index I if in any N x d submatrix of A the 
combination of levels for a particular row appears with the same frequency A. 

For an example, refer to Table 111. This is an array of size eight, seven constraints and two 
levels. If we consider columns 1 and 2 (i.e. 8 x 2 submatrix), we find that the combination levels 
(1 l), (1 2), (2 1) and (2 2) appear with same frequency i.e. two times each. 

Again, if we consider columns 1, 2 and 3 (i.e. 8 x 3 submatrix), we find that the combination 
levels (1  1 l), (1 2 2), (2 1 2) and (2 2 1) appear with same frequency (two times each). The 
same is true for any submatrix. Hence the array is said to be orthogonal. 

Each orthogonal array has associated with it a set of linear graphs (Figures 1-3 for Tables 
11-IV respectively). 

The concept of such linear graphs was propounded by T a g ~ c h i , ~  a well-known figure in the 
field of statistical quality control (SQC). The use of linear graphs makes it possible to design and 
analyse complicated experiments without requiring the basic knowledge of the constructions of 
design using finite geornetrics and Galois fields. 

A linear graph associated with an orthogonal array represents the information about the 
interactions between some specified columns of that array. It consists of a set of nodes and a set of 
lines, each of which joins a certain pair of nodes. A node represents the column of the array which 
is to be assigned to the main factor. A line joining any two nodes denotes the column of the array 

Table 11. L4 array 

Experiment Column number 

1 2 3 

1 1 1 
1 2 2 
2 1 2 
2 2 1 

Table 111. L8 array 

Experiment 

1 2 3 4 5 6 7  

1 1 1 1 1 1 1 1  
2 1 1 1 2 2 2 2  
3 1 2 2 1 1 2 2  
4 1 2 2 2 2 1 1  
5 2 1 2 1 2 1 2  
6 2 1 2 2 1 2 1  
7 2 2 1 1 2 2 1  
8 2 2 1 2 1 1 2  
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Table IV. L16 array 

Experiment Column number 
~~ ~ 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
2 
3 
4 

1 
2 
2 

1 
2 
2 

1 
2 
2 

1 
2 
2 

2 
1 
2 

2 
1 
2 

2 
1 
2 

2 
1 
2 

2 
2 
1 

2 
2 
1 

2 
2 
1 

2 
2 
1 

5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2  
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1  
I 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1  
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 2 2 2 2 1 1 2 2 1 1 1 1 2 2  
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2  
2 1 2 1 2 1 2 2 1 2 1 2 1 2 1  
2 1 2 2 1 2 1 1 2 1 2 2 1 2 1  
2 1 2 2 1 2 1 2 1 2 1 1 2 1 2  
2 2 1 1 2 2 1 1 2 2 1 1 2 2 1  
2 2 1 1 2 2 1 2 1 1 2 2 1 1 2  
2 2 1 2 1 1 2 1 2 2 1 2 1 1 2  
2 2 1 2 1 1 2 2 1 1 2 1 2 2 1  

.,2 3 1. 

Figure 1. Linear graph of L4 table 

( 1  1 
Figure 2. Linear graphs of L8 table 

which is to be assigned to the interaction effect of the main factors associated with nodes being 
joined. 

For a two-level experiment the orthogonal arrays are classified as L4, L8, L16 and so on. Here 
L4 for example means that this orthogonal table can be used if the minimum number of 
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(1) a 
1 

b 
Q 

C 
5 

12 

fy&,, 
10 

6 5  2 1  1 7  
4 10 8 12 

12 4 8 

(2) a b C 

15 7 8 11 7 

12 

(3) a 

7 1 13 

10 

b 

10 2 8 12 5 

C 
7 5 13 

12 4 1 10 

Figure 3. Linear graphs of L16 table 

experiments required to be conducted is four. The L4, L8 and L16 arrays along with their 
associated linear graphs are shown in Tables 11-IV and Figures 1-3. 

EXPERIMENTAL DESIGN FOR COMPUTER SIMULATION CODES 

The design-of-experiment techniques used for physical experiments can also be applied to 
computer simulation codes since these codes are analogous to the real life situation, the only 
difference being that the physical phenomenon is replaced by mathematical models. 
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An additional advantage when this technique is applied to such codes is that there are no 
uncontrolled variables (unlike in a physical system) and the ideal situation exists. Hence 
replication and randomization need not be done. There is also some modification to be done 
when analysing the data obtained from numerical studies. This is explained in detail a little later. 

In an application-oriented simulation package involving several differential equations the 
situation is as complex as any real life situation. It may not be easy to infer by examination alone 
the effect of variation of a particular term in a particular equation. Design-of-experiment 
techniques will be of help in such cases. These techniques will also be of great use in parametric 
studies with simulation packages. 

In the CFD area this technique can be used for several purposes, e.g. 

(i) optimization of relaxation factors in finite difference codes 
(ii) numerical estimation of the effects of swirlers, injection holes, flame holders, etc. on the 

recirculation zone in gas turbine combustion chambers 
(iii) estimation of the effects of various algorithms and their interaction with grid size and 

relaxation factors on the convergence rate 
(iv) determination of various adjustable constants to be substituted in the differential equa- 

tions to match the real life variation of any factor. 

The rest of the paper demonstrates the use of orthogonal array design for optimizing 
underrelaxation factors in a finite difference code. 

PROBLEM DESCRIPTION 

A finite difference code for three-dimensional turbulent recirculating flow is used for the present 
study. 

The governing partial differential equations for mass, momentum and energy can be gen- 
eralized as 

a 
at 
-(p+)+div(pV+-rgrad+)=S,, 

where + is any dependent variable, p is the density, r is the diffusion coefficient, V is the velocity 
vector and S, is the source term for 4. 

This code solves for continuity, the velocity in three directions, turbulent kinetic energy and 
turbulence dissipation rate using the algorithm SIMPLE (semi-implicit method for pressure- 
linked  equation^).^ 

The essential feature of SIMPLE is the replacement of the continuity equation with a Poisson 
type of pressure correction equation. This pressure correction equation is prone to divergence in 
the iterative solutions. Hence underrelaxation factors are introduced when solving for the 
dependent variables to ensure convergence. 

The discretized form of the governing partial differential equation is 

a P 4 P  = c %b&nb + s, 
where a denotes the coefficient of convective and diffusive fluxes. The subscripts ‘ P  and ‘nb’ 
denote the grid point under consideration and the neighbouring grid point respectively. 

By introducing an underrelaxation factor a, we modify the above equation as 
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where 4; is the value of 4 from the previous iteration. The value of a should be between zero to 
unity. The optimum value of a may depend on the nature of the problem, the grid configurations 
and the type of algorithm employed. This study estimates the effects of variation in various under- 
relaxation factors employed when solving for velocities, pressure, kinetic energy k, turbulence 
dissipation E and turbulent viscosity p, . 

The possibility of convergence with the number of iterations depends on the magnitude of 
underrelaxation. If it is very low, convergence will be slow; if it is very high, oscillations will occur. 
Besides, every variable need not require the same magnitude of underrelaxation. Hence the 
problem is that of optimizing the underrelaxation factors. 

Underrelaxation factors are said to be optimized if their settings minimize the number of 
iterations taken for convergence. The convergence criterion in this case is that the sum of absdute 
source terms should be less than 0.1% of the total inflow. Optimization is done using the 
orthogonal array technique as detailed in the next section. 

The geometry of the physical system considered is that of a gas turbine can combustor as 
shown in Figure 4. However, for simplicity the flow considered is of non-reacting type. Air is set in 
swirling motion through the vane swirlers in the annular space and then admitted into the 
combustor. No fuel is injected. Additional air is injected radially through one row of holes (six in 
number) on the combustor walls. Also, air is directed tangentially through a circumferential slot 
around the combustor wall. 

Analysis is done for an angular sector of 60" (because other sections are identical to the section 
considered) and for three grid configurations, namely 15 x 12 x 5, 18 x 14 x 7 and 20 x 16 x 9. 

CALCULATION OF CONTRIBUTION RATIO 

Following the philosophy of design of experiments (DOE), the steps in calculating the contribu- 
tion ratios are as follows. 

-Air 1 Air  

I 

S w i r l e r s  $2 
All dimensions a r e  in mn 

250  
t I - 

89 - 
Figure 4. Combustion chamber geometry 
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(1)  Decide upon the levels, factors, main effects and interactions. 

We confine ourselves to two-level experiments. The main effects chosen to be estimated are 
underrelaxation factors (URFs) for velocities u, u and w; pressure (p) ;  kinetic energy ( k )  and 
turbulence dissipation (6); and turbulent viscosity ( pt). 

URFs for velocities in all three directions are grouped together as factor A. The individual 
effects of the three components of velocity are not being estimated for two reasons: one is that 
these components are obtained from the solution of the same type of differential equation having 
similar source terms; the other reason is that if the individual effects are estimated at this stage, the 
minimum number of experiments to be performed will be more, which may not be economical. By 
the same argument the URFs for k and E are grouped together as C. The URFs for p and p, are 
denoted by B and D respectively. 

Table V gives the values of the URF for various factors at two different levels. It has been found 
that URFs of 0.5 for velocity and 0.8 for pressure are satisfactory in a large number of flow 
 situation^.^ Hence we have fixed the ranges of URFs for velocity and pressure around these 
values. The range for k, E and p, is the same as that for velocity since the values of these terms 
depend to a great extent on the value of velocity. 

We have chosen to estimate all five first-order interactions, namely A x B, A x C, A x D, B x C, 
B x D and C x D. We are not estimating the individual effects of higher-order interactions such as 
A x B x C,  A x B x D, A x C x D, B x C x D and A x B x C x D since they are difficult to interpret 
and also their effects will not be significant, as will be evident later. 

(2) Compute the minimum number of degrees of freedom required to estimate all the effects that 

As evident from Table VI, the minimum number of degrees of freedom in this case is 10. 
are of interest. 

(3) Calculate the minimum number of experiments (MNE) required 

MNE =minimum number of degrees of freedom + 1 = 1 1.  

(4) Choose an orthogonal array (OA) just greater than the value of MNE. 
The OA just greater than MNE is L16 (Table IV). We choose this array. The total number 

of degrees of freedom is now 16- 1 = 15. 
(5) Express the information required in an experiment by linear graphs representing the main 

effects by nodes and interactions between two factors as a line joining the nodes. This is 
known as the required linear graph (RLG) and is shown in Figure 5(a). 

(6) Compare the standard linear graph (SLG) of the chosen array with the RLG and modify the 
SLG to correspond to the RLG. 

We choose SLG l(a) associated with the L16 table (Figure 3) and modify it to correspond 
to the RLG by deleting the lines connecting nodes 2 and 15,4 and 15,2 and 4, and 1 and 2. 

Table V. Values of URFs for various factors 

Factors Levels 

1 2 

URF for u, u, w (A) 03 0.6 
URF for p (B) 0.5 0.8 
URF for k and E (C) 0.3 0.6 
URF for p, (D) 0.3 06 
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Table VI. Degrees of freedom for various factors 

Factor Level Degrees of freedom 
(number of levels - 1) 

A 
B 
C 
D 
A x B  
A x C  
A x D  
B x C  
B x D  
C x D  

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Minimum number of degrees of freedom 10 

A 

1 

4 12 

( C  1 
Figure 5. (a) Required linear graph (RLG). (b) Stan--r linear graph (SLG). (c) Modi..:d SLG 

When this is done, the deleted nodes and lines become independent nodes, namely 2,3,6,10 
and 13 as shown in Figures 5(b) and 5(c). 

(7) Allocate the factors and interactions to the respective columns by comparing the modified 
SLG with the RLG. 
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In this case, comparing Figures 5(a) and 5(c), we make the following allocations: 

A + 1  B 4 4  C + 8  D -15 

A x B +  5 A x C+9 A x D 4 4  B x C+12 
BxD+11 CxD-+7  

(8) The experimental layout is determined by copying these columns from the orthogonal 

Here we have the experimental lay-out as per Table VII. 
The numbers 1 and 2 indicate the level of the factors. For example, in experiment 4 the levels of 

factors A and D are at 1 and those of B and D are at 2. This means that the experiment is 
performed with URFs for A and D at 0.3, URF for B at 0.8 and URF for C at 0.6. 

If physical experiments were being done, the sequence of experiments would have been 
randomized and also each observation would have been replicated; but since we are performing 
numerical experiments, these are not necessary since the situation is ideal. 

The responses, i.e. the number of iterations required for convergence, for the three grid 
configurations tested are also indicated in Table VII. 

(9) Calculate the contribution ratio for each factor and interaction considered. 

When analysing the data of physical experiments, it is essential to confirm the contribution 
ratio calculated by subjecting the data to an analysis of variance (ANOVA) test. Without this test 
we cannot say for certain whether the change in response obtained by changing the settings is 
really different from that of the original settings or whether it falls within the range of response 

table. 

Table VII. Experimental lay-out and results 

Main effects and interactions 

A B C D A x B  A x C  A x D  B x C  B x D  C x D  

Number of iterations 
per grids 

Column: 1 4 8  15 5 9 14 12 11 7 I I1 I11 
Experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 1 1  1 1 1 1 1 1 1 
1 1 2  2 1 2 2 2 2 1 
1 2 1  2 2 1 2 2 1 2 
1 2 2  1 2 2 1 1 2 2 
1 1 1  2 1 1 2 1 2 2 
1 1 2  1 1 2 1 2 1 2 
1 2 1  1 2 1 1 2 2 1 
1 2 2  2 2 2 2 1 1 1 
2 1 1  2 2 2 1 1 2 2 
2 1 2  1 2 1 2 2 1 2 
2 2 1  1 1 2 2 2 2 1 
2 2 2  2 1 1 1 1 1 1 
2 1 1  1 2 2 2 1 1 1 
2 1 2  2 2 1 1 2 2 1 
2 2 1  2 1 2 1 2 1 2 
2 2 2  1 1 1 2 1 2 2 

320 
314 
308 
305 
318 
316 
310 
304 
294 
191 
229 
191 
29 1 
203 
239 
193 

464 732 
459 724 
435 691 
413 665 
461 729 
461 725 
437 699 
411 663 
378 527 
333 497 
321 467 
301 464 
379 530 
332 494 
319 486 
303 466 

Grid1 1 5 x 1 2 ~ 5 .  
Grid 11: 18 x 14 x 7. 
Grid 111: 20 x 16 x 9. 
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that could be obtained with the original settings themselves. This is because the presence of 
uncontrolled variables causes the individual observations to scatter around a mean value in most 
real life situations. By the ANOVA test we can quantify this uncertainty. We say that a particular 
change in setting of a factor has a significant effect on the response only if this test shows an 
uncertainty below 5% (or in other words a confidence level of 95%). 

However, in numerical experiments (except those involving random number generation) such 
tests are not necessary, because we can say with 100% confidence that whatever results we get due 
to changes in the settings are really a departure from that of the original settings. Hence it is 
enough to calculate only the contribution ratio. 

The steps in the calculation of the contribution ratio for each factor are as f01lows.~ 

(i) Average response (AR)  

AR = GIN,  

where G is the grand total of all responses and N is the number of responses. 
(ii) Total sum of squares (TSS) 

N 
TSS= C (x~-AR)~,  

i = l  

where x i  denotes the individual response. 

For a factor A: 

(iii) Sum of squares due to eachfactor ( S S )  

SSA=SSA, + SSA, 2 ,  

where 

SS,, = nA, x (mean of all responses with A at level 1 - AR)’, 

SS,, = n,, x (mean of all responses with A at level 2 - AR)2, 

where n,, and nA,2 denote total numbers of responses with A at levels 1 and 2 respectively. 
Similarly calculate SS,, SS,, SS, , SS, ,, SS, ,, etc. 

SSresjduals = TSS - (sum of SS of all the main factors and interactions) 

SSresiduals will include the effects of all the remaining possible interactions among A, B, C 
and D. In physical experiments it also accounts for the effects due to uncontrolled 
variables. 

(iv) Contribution ratio (CR)  

ss 
TSS ’ 

CR= 100 x - 

RESULTS AND DISCUSSION 

Table VIII shows the contribution ratios for all the main effects and interactions for the three 
different grid configurations. The following facts are evident from the table. 

(i) Within the range of values of URFs chosen, the URF for velocities turns out to be the 
major contributing factor in all the grid configurations. Its effect increases with increasing 
number of grid points, the CR being as high as 94.6% for the 20 x 16 x 9 configuration. 

(ii) The CRs of the URFs for pressure and for kinetic energy and dissipation rate are less than 
15% in all cases. 
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Table VIII. Contribution ratios of main effects and interactions 
~ ~~ 

Factors Contribution ratios (%) 

Grid I Grid I1 Grid I11 

67.48 
4.32 

13.04 
0.03918 
1.13 

10.18 
0.14 
1.72 
0.0055 
00006 
1.94 

83.04 
11.60 
3.55 
0.0244 
0.09 12 
0.6 102 
0.0078 
0.0183 
0.8982 
0~0001 
0.1594 

94.6 
4.02 
09316 
OQO02936 
0.01438 
OW02642 
0.01 178 
0.00055 13 
0.01726 
0.01 178 
0.3931 

Total 100.0 100.0 100.0 

(iii) The CR for effective viscosity is negligible in all cases. 
(iv) The interaction effects are negligible in all cases, except in the case of 15 x 12 x 5 grid where 

In addition, from Table VII we can infer that the treatment combination for the minimum 
number of iterations required for convergence is the same for all the grids. This is when all factors 
are at level 2. 

An attempt is made to minimize the number of iterations further by varying only the URF for 
the most significant factor (in this case the URF for velocity). The other URFs are kept at level 2. 
The results are depicted in Figure 6. We find that when the value of the URF is greater than 0.65 
in the case of the 15 x 12 x 5 grid and greater than 0.625 in the cases of the 18 x 14 x 7 and 
20 x 16 x 9 grids, divergence occurs. Hence the URF value of 0.625 is considered to be ideal. 

the A x C interaction contributes 10.18%. 

CONCLUSIONS 

In this flow situation the URF of velocity is found to have a very dominant effect on convergence 
for all the grids. This dominance increases with increasing number of grid points. 

When performing grid independence tests, the number of iterations for convergence increases 
with increasing number of grid points. If the URFs are optimized for the minimum number of 
iterations for convergence, the computing costs can be reduced. 

From the results of our case we can infer that for similar flow situations the URFs can be 
optimized on coarser grids and the same settings can then be used when executing the code on 
finer grid configurations. 

Table IX shows the CPU time taken to achieve convergence with optimized setting for all the 
grid configurations. It is evident that the coarsest grid (15 x 12 x 5) takes only 10% of the time 
taken for convergence by the finest grid (20 x 16 x 9). Also, as mentioned earlier, the settings are 
the same for all the grid configurations. 

This indicates that a tremendous amount of computer time can be saved when the URFs are 
optimized on coarser grids rather than on the finer grids where the final results are required. 
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Figure 6. Effect of URF for velocities on convergence 

Table IX. Comparison of CPU times for various grids 

Grid size CPU time (minutes) for convergence 
(for optimized setting) 

15 x 12 x 5 
1 8 x 1 4 ~ 7  
2 0 x 1 6 ~ 9  

2.9 
10.3 
28.7 

70 

CLOSURE 

The primary aim of this paper is to introduce the design-of-experiments technique to researchers 
working in the field of mathematical modelling and computer simulation. Since we are involved 
in the mathematical modelling of gas turbine combustion- chambers, the example chosen was 
from this field, but the technique is of a general nature and can be applied to any code for 
parametric studies. 

Also, it should be borne in mind that this paper is only a demonstration case of a particular 
technique. However, we get some guidance on how to optimize the URFs for similar flow 
situations. We also do not claim that this technique leads to the best possible optimization of 
URFs, but we do feel that the final settings obtained are a good trade-off between the constraints 
of CPU time and the best possible settings. 
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Design-of-experiments techniques are not limited to the OA technique alone. Other techniques 
are detailed in the references listed. The OA technique itself can be made more sophisticated: (i) by 
opting for three or more levels of factors in order to adequately resolve the response character- 
istics for some sensitive systems where there is a strong peak or valley in the response curve in 
a narrow window of the range of values admitted by a particular system variable; (ii) by using 
a dummy level technique for accommodating a two-level factor in a three-level OA series, a 
three-level factor in a four-level series, and so on; (iii) by using a multilevel technique which 
accommodates a higher-level factor in a lower-level array. Work in these areas is in progress. 

To sum up, we feel that the purpose of this paper is served if it motivates researchers in the 
numerical simulation area to apply design-of-experiment techniques in their respective fields and 
comment on the efficacy of such methods. 
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